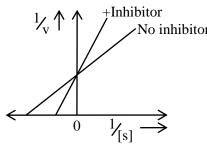
RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2013 SECOND YEAR

Date : 14/12/2013 MICROBIOLOGY (Honours)


Time: 11 am – 3 pm Paper: III Full Marks: 75

[Use Separate Answer Scripts for each group]

Group - A

1.	An	swer all the questions:	
	a)	Cite two examples of non-ribosomal peptides. Mention the important distinctive features of ribosomal peptide synthetases (NRPSs).	non- [1+1·5]
	b)	Write down the differences between DNA polymerase I and DNA polymerase III of <i>E. coli</i> .	[2.5]
2.	An	swer <u>any three</u> of the following:	
	a)	i) How can you prove that DNA replication is semi-conservative in nature?	[3]
		ii) How does puromycin inhibit translation of mRNA in E. coli?	[2]
		iii) Why is it not so essential for RNA polymerase to have proof-reading activity?	[1]
		iv) Mention the important features of the tertiary structure of t-RNA.	[2]
	b)	i) "A different σ factor comes into play in E. coli when the E.coli culture is abruptly raise	d to a
		higher temperature (say 42°C) from 37°C." Explain.	[2]
		ii) What is an operon?	[1]
		iii) What is meant by glucose effect? How does CAP - cAMP complex play an important r	
		lac operon?	[1+2]
		iv) What are the activators that work together in <i>ara</i> operon?	[1]
		v) How does allolactose control the functioning of the <i>lac</i> operon?	[1]
	c)	i) Briefly describe the mechanism of ρ -dependent termination of transcription in <i>E. coli</i> .	[3]
		ii) Mention the roles of the consensus sequences of DNA in carrying out transcription.	[2]
		iii) Define the terms: template strand, open-promoter complex.	[2]
		iv) Mention a drug which is an inhibitor of both DNA replication and transcription.	[1]
	d)	i) What is 'Wobble' hypothesis?	[2]
	ĺ	ii) How does aminoacyl tRNA synthetase proofread during translation?	[3]
		iii) How can you prove that translation occurs in the $5' \rightarrow 3'$ direction?	[3]
	e)	i) What are introns?	[1]
	• ,	ii) Mention the two types of posttransciptional processing of mRNA in eukaryotes. Give	
		explanations.	[2×3]
		iii) What do you mean by polycistronic mRNA?	[1]
	f)	i) Calculate the number of GTP molecules utilized per ribosomal cycle during translation.	[2]
		ii) What is attenuation? How does it work?	[1+3]
		iii) What are the features of I^s and Γ^d alleles of I^+ gene in <i>lac</i> operon?	[2]
3.	An	swer <u>any two</u> of the following:	
	a)	i) Mention the functional differences between chloroplast and mitochondria.	[3]
	•	ii) What is Kartagenre's syndrome?	[2]
		iii) Explain the similarities and dissimilarities between doubling of a centrosome and	
		replication.	[3]
		1	

i) Mention the marker enzymes (two for each) of : mitochondria and plasma membrane. [2] b) ii) Briefly describe the molecular organisation of thylakoids. [3] iii) Describe the composition of 70S ribosome. [1] iv) Briefly describe the arrangement of microtubules in a flagellum. [2] i) Write a brief account on the architecture of biological membranes. [2] c) ii) What are porins? Briefly explain their general structure. [2] iii) How do chain length and degree of unsaturation of fatty acids and the presence of cholesterol in biological membrane control the membrane function? [3] iv) What is the cause of cystic fibrosis? [1] d) i) Define: Ionophore, Liposome [2] ii) What is the difference between eubacteria and archaebacteria with respect to the composition [2] of membrane phospholipids? iii) What do you mean by primary and secondary active transport? Give an example in each case. [3] iv) What is cotransport? [1] Group – B Answer **any three** of the following: i) What do you mean by ribozyme? a) [1] ii) What do you mean by the term 'Activation Energy' for an enzyme-catalyzed reaction? [2] iii) Write down two reactions where NAD⁺ and TPP one used as cofactors/coenzymes. $[1.5\times2]$ i) Explain the importance of K_m (Michaelis-Menten constant) for an enzyme catalyzed reaction. b) [2] ii) Given the reaction : $E + S \xrightarrow{k_1} ES \xrightarrow{k_p} E + P$ $k_1 = 1 \times 10^7 \,\text{M}^{-1} \,\text{sec}^{-1}, \ k_{-1} = 1 \times 10^2 \,\text{sec}^{-1} \ \text{and} \ k_p = 3 \times 10^2 \,\text{sec}^{-1}$ Calculate : (1) K_S (2) K_m (3) Can k_P be very much greater than k_1 ? [1+1+2]i) Discuss the roles of p^H and temperature on enzymatic activity. c) $[1.5\times2]$ ii) Define the terms: Prosthetic group, Holoenzyme $[1.5\times2]$ d) i) What do you mean by rate limiting step of an enzyme-catalyzed biochemical pathway? Give [2] ii) Discuss with example 'covalent modification' as a mechanism of regulation of enzyme activity. [3] iii) What do you mean by ternover number of an enzyme-catalyzed reaction? [1] i) What fraction of V_{max} is observed at e) (1) [S] = 0.75 Km, (2) Calculate the ratio of $[S]_{0.75} / [S]_{0.5}$. [1+1]ii) What type of enzyme inhibition gives the following plot, [2]

iii) Give one example of each of the enzyme class—(1) Lyase (2) Ligase

[2]

f) i) The following data were recorded for the enzyme catalyzed reaction, $S \rightarrow P$.

[S]	V
(M)	$(nmoles \times litre^{-1} \times min^{-1})$
6.25×10^{-6}	15.0
7.5×10^{-5}	56.25
1.00×10^{-4}	60
1.00×10^{-3}	74.9
1.00×10^{-2}	75

- 1. Estimate V_{max} and K_m
- 2. What would the value of 'v' at $[S] = 2.5 \times 10^{-5} M$?
- 3. What would be the value of 'v' at 5.0×10^{-5} M if enzyme concentration is doubled? [2+1+1][2]
- ii) How do isomerases work? Give one example of an isomerase —catalyzed reaction.

5. Answer **any two** of the following:

- i) What is the importance of indicator organism in microbiological analysis of water? [2] ii) Suggest four important criteria of an ideal indicator organism. [2] iii) Name two waterborne diseases with their causative agents. [2]
- b) i) Discuss the principle of 'Indole test'. [2]
 - ii) What are the advantages and disadvantages of membrane filtration technique? [2+2]
- c) i) What is sludge? [1]
 - ii) Define BOD? [2]
 - iii) Discuss the expected result if E. coli and Klebsiella are subjected to IMV_{iC} test. [3]
- i) What is aerosol? d) [1]
 - ii) What are the differences between droplet proper and droplet nuclei? [3]
 - iii) Name two airborne diseases with their causative agents. [2]